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The presence of small initial geometric imperfections of shell structures causes pre- 
mature buckling. Great attention to investigations on the sensitivity of the crftical load 
to the initial geometric imperfections has been paid in [i]. It is mentioned in papers of 
Seide, Arbosh, Kaplan, and Babcock, Jr. [2] that precisely the initial deflections are the 
main cause for the huge spread in experimental results and the poor correlation between 
theoretical and experimental results. The importance of the question of the degree of sensi- 
tivity to initial imperfections is also noted by Fersht [2]. 

By perturbation theory methods, problems of the linear theory of the buckling of non- 
ideal shallow cylindrical shells are investigated in this paper. Shells are examined that are 
loaded by transverse and hydrostatic pressure as also longitudinally compressed shells. The 
eigennumbers (critical loads) and eigenfunctions (buckling modes) of nonideal shells are 
sought in the form of asymptotic series in a small parameter that characterizes the amplitude 
of the initial imperfections. Explicit formulas are obtained for the first terms of the ex- 
pansions. Only the initial linear system of equations of shallow shell theory is used in the 
method proposed for the construction of the mentioned eigennumbers and eigenfunctions. 

i. FORMULATION OF THE PROBLEM. CONSTRUCTION OF ASYMPTOTIC EXPANSIONS 
OF EIGENFUNCTIONS AND NUMBERS 

Distortion of the spectrum in linear stability problems is studied for nonideal cylindri- 
cal shells where the spectrum in stability problems of ideal cylindrical shells is taken as 
basis; the system of equations for nonideal shells in dimensionless notation has the form [3] 

u;O _ _  0 dhAw + S=-- ~ (<hw=: + %."~) -- ~ (h/n) ( / ~ y , :  + &,~ ~ 2/xywxls) = O, ( i .  i )  

AA/=wmz--~(h/R){w w ~ +w W~ x w~ ~, \ x x  y y  ~ yy  y y]. . 

o )~(R/h)au, o _ (R/h) 1o ~0," A W  = Wxx  -~  Wyy,  ] xx  - -  ]yy  - -  )~ a l  ~ x y  

w, w~ / ,  , 82 i ( h )2 O < x < L / R ,  
- -  h ' ] -  Eh2R t 2 ( i - - v  2) ~ ' O < y ~ 2 n ,  

where w and w, are the dimensionless and dimensional normal deflections, f and f, are dimension- 

less and dimensional stress functions, w ~ and w$ are dimensionless and dimensional functions 

characterizing the initial imperfections of the shell, where maxlw~ = i, ~ is a small param- 
eters proportional to the amplitude of the initial imperfections, h, R, L are the thickness, 
radius, and length of the cylindrical shell, s is a small parameter governing the thin-walled- 
ness of the structure, E and ~ are Young's modulus and the Poisson ratio, the constant force 
components in the longitudinal fo and circumferential fo directions are proportional to the 

xx yy 
loading parameter %, al, a2 are coefficients. Shells are considered that are loaded by a 

constant transverse pressure (problem i, aa = --i, al = 0), by a constant hydrostatic pressure 

(problem 2, a= = -i, al = --1/2), and longitudinally compressed shells (problem 3, aa = 0, 

al = --2) . 

We assume, i) such loading and clamping conditions arerealized on the shell endfaces 
that for ~ ~ 0 we have a membrane state of stress; 2) out of the four boundary conditions for 
each of the endfaces two of the linear conditions are formulated only for the normal deflection 
w and the other two linear conditions for only the stress function f, i.e., 
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g p j / =  0 (p = O, t , ]  = i ,  2), gpjw= 0 (p = O, 1 , ] =  3, 4). (1.2) 

Here gpj are differential operators whose form remains invariant for ~ ~ 0 and ~ # 0. 

The second constraint is used substantially for the construction of perturbation theory 
methods [4-6] for eigenfunctions and eigenvalues (~ is a small parameter), and namely those 
values of the loading parameter X@ are sought for which the system of equations (i.I) with 

�9 

the appropriate boundary conditions (1.2) has the nontrivial solution w@ and f@: 

d * - -  f.ttw~, 
e ~w i , -i ' i  

�9 = O ( p = O , l ,  / = 3 , 4 ) ,  g p / ~  = 0  ( p = 0 ,  t, ] = t ,  2), gpjW i 

8 00 o 

= = ) ~  + = ( )w % ( ) ~  + ~ ( ) ~ ,  t (~/~) [ ~ o  ( ~o _ ~ ( )~] .  

(1.3) 

The eigenfunction and eigennumber problem (1.3) for ~ # 0 is called perturbed [4-6]; for 
~ 0 this problem goes over into the unperturbed problem 

(e~a ~ @ cF)qP~ - -  s = O, Gpj(P$ = 0 (p = 0, l ,  j = i ,  2, 3, 4), (1.4) 

where G . are operators of the boundary conditions (I.2), X. and ~i are the eigennumbers and 
pJ 

eigenfunctions of the unperturbed problem in terms of which the normal deflections and stress 

functions corresponding to the unperturbed problem (1.4) are expressed by means of w. = a~. 

f. = d~.. Following the customary procedures [4-6], we represent the eigenfunctions w~, f~ 

and the numbers X~ of the problem (1.3) in the form of asymptotic series in the parameter ~: 

* . ( o ) . _ .  ( 1 ) ~ _ .  2 ( 2 )  . .  , (bw*, = 6 i j ,  * * 
~=~ ~ ~ + ~) ~%=~' (1.5) 

* (o) . ,(1) . .  2dz) (baO i, = 5 i j ,  (( e2a2 d2) ffPi' = %~biJ' l i  = l i  + m~ _T , q + . . . .  (Pj) + q~J) 

The  n o r m a l i z a t i o n  c o n d i t i o n s  f o r  t h e  p e r t u r b e d  p r o b l e m  ( 1 . 3 )  a r e  p r e s e n t e d  i n  t h e  f i r s t  
l i n e  o f  ( 1 . 5 ) ,  t h e  p a r e n t h e s e s  d e n o t e  t h e  s c a l a r  p r o d u c t ,  n o r m a l i z a t i o n  c o n d i t i o n s  f o r  t h e  u n -  
p e r t u r b e d  problem are in the second line (dij are Kronecker symbols), and the eigenvalues X. 

�9 i 

of the unperturbed problem (1.4) are ordered in the usual manner. The asymptotic expansions 
(1.5) are substituted into the system of equations and boundary conditions of the problem (1.3): 

(wlo) + .wp) + . . )  + (d - ( i lo)+ .Ii" + . .  ) - + . - . ) •  ( 1 . 6 )  

•176 + ~ .  w(~)~_~- . . . )  = o, g~j (w~o) + ~ (1 )  + . . . )  o (p = o, i ,  j = a, ~); 

a ( ] i  O) ~- V/ i  i) -~-""" ) = (d - -  ~tt) (wi~ -~ ~twl 1) - ~ - . . .  ) ,  gpj ( / i  O) -~ ~ / i  1) - ~ . . .  ) = 0 (p = 0, 1, ] = 1, 2). ( 1 . 7 )  

We collect term of the same order of smallness in problems (1.6) and (i.7). We then 
start with terms with ~o, the problem of these terms agrees with problem (1.4) after appropriate 
manipulation, the eigennumbers and eigenfunetions are h i and ~'l (i = i, 2, ... ), where the 

latter are orthonormalized. Equating terms in ~ to the first power, we have 

(1.8) 
~1~l)=dwp)- - t ,4o)  ~ .f(.1>=0 ( p = O , t  ] = t , 2 ) ;  �9 , op2. z 

s2at~ 1 )+  df(1)'i - -  $~(0).~ - -  ~ibw~l) --"i~(1)bw(0) -- 0 -  i -- ' ( 1 . 9 )  

gpjW~ 1) = 0 (p = 0, t ,  ] = 3, 4). 
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The other problems are formulated in the same manner. The main difficulty in solving the 
problems (1.8) and (1.9) is related to the fact that the unknown functions f(~) and w(~) 
are in the equations (1.8) and (1.9). l 

Construction of the expansion (1.5) depends on the multiplicity of the eigennumber X. 
i 

is prime; 2) %. has the multiplicity ioo -- io + i, i.e. of the problem (1.4): i) %i i 

Zio = ~io+i . . . . .  ~%o" (I.i0) 

In general, the eigenvalues for closed cylindrical shells are always duplex; however, we 
shall not eliminate the first case from consideration since it is typical for unclosed cylin- 
drical shells (panels) whose rectilinear edges are hinge-supported. 

is prime, then w(~ ) Thus, X i 

terms of the eigenfunctions ~"1 Let us assume [4-6] that the functions f(i ) and w(~ )I 

p a n d e d  i n  a s e r i e s  o f  t h e  e i g e n f u n c t i o n s  f .  and  w . ,  m o r e  e x a c t l y  
1 1 

. /~1)= ~ ~h,~[h ' W~I): ~ ~ki//)h. (2.1) 
h=l k = l  

It follows from the normalization condition (1.5) that Bii = 0, The eigenfunctions f. 
1 

and w. s a t i s f y  t h e  b o u n d a r y - v a l u e  c o n d i t i o n s  o f  p r o b l e m s  ( 1 . 8 )  and  ( 1 . 9 ) ;  h e n c e ,  t h e r e  r e -  
1 .  

mains 3 u s t  t o  s e l e c t  t h e  c o e f f i c i e n t s  a k i  and 8 k i .  We e x p r e s s  t h e  f u n c t i o n s  f i  and  w.j_ i n  

terms of ~i; then from the equations of the problem (1.8) we obtain relationships connecting 

the c o e f f i c i e n t s  C~ki and t3kit 

(ahi - -  ~hi) (adq~h' ag j) = - -  ( ta@i, @j), i = 1, 2 . . . .  ( 2 . 2 )  
h=l 

2. PRIME EIGENVALUE 

= w i '  f ( ~ )  = f i '  we r e c a l l  t h a t  w i and  f i  a r e  e x p r e s s e d  i n  

are ex- 

Let us go over to an investigation of the infinite system (2.2) for the first and second 
buckling problems; let us recall the structure of the solution governing the buckling mode: 
The solution consists of the fundamental (generating) part and the edge effect for stability 
[7, 8]. Hence, the elements outside the main diagonal of the determinant corresponding to 
the system (2.2) characterize the rapidity of the damping of the edge effects for stability, 
i.e., 

~ ,  (o~hi - -  ~.) (adaPt, apj) ~ O. ( 2 . 3 )  
k#j 

Let us omit these secondary elements outside the diagonal of the determinant; the coefficients 
Ski are expressed in terms of Bki: 

ahi  = ~hi - - ( t a X i '  ~ h ) ( a d ~ h ,  ~k)-l, k = t, 2 . . . .  ( 2 . 4 )  

The r e l a t i o n s h i p s  ( 2 . 1 )  a r e  t a k e n  i n t o  a c c o u n t  i n  d e t e r m i n i n g  t h e  c o e f f i c i e n t s  ~ k i  and X (1)  i ' 
a s  a r e  t h e  f o r m u l a s  ( 2 . 4 )  and  a r e l a t i o n s h i p  a n a l o g o u s  t o  ( 2 . 3 )  

h:/=j 

We finally obtain 

(~,~%, %) + (t~%, %) (ad%, %)-1 (,~%, %) 
I~hi = Lh --~i for i :#: k. 

(2.5) 

In the general case aii # 0 although Bii = 0. The approximate relationships (2.4) and 

(2.5) are transformed into exact relations for all three problems under consideration if the 
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shells are hinge-supported along the contour. Higher terms of the expansion can also be 
constructed in an analogous manner. 

3. MULTIPLE EIGENVALUE 

(o) ~) are Now, let %i be a multiple eigenvalue (see (I.i0)). The eigenfunctions w i and f( 

linear combinations of the unperturbed eigenfunctions [4-6] corresponding to a multiple eigen- 

value (only hinge-supported shells are considered henceforth): 

�9 ~oo 
w ~ ~  ' l ~ ~  ' Z i =  ~ OniOn ' i = i o '  i o + i  . . . . .  ~'oo" ( 3 . 1 )  

The new eigenfunctions w (~ (o) l" ' f i" differ from "the eigenfunctions of the unperturbed prob- 

lem in that the former are adapted to the perturbation mode by the selection of the system of 

coefficients Pni(n, i = io, io + I, ..., ioo). A linear homogeneous system is obtained for 

the unknown coefficients Pni: 

\ n = i  o \ n = i  o 

+ ~i~(Z)P'Ri = O, k = i o, i o + t . . . . .  ~oo" 

+ (3.2) 

We determine %(i ) z from the solvability condition for the system (3.2). We assume A) that 

X(i " a(') ~(1) -- = ~ ! l ) , i o ~ ] o < ] O 0 ~ f O  # all ) i = io, i + i, io are distinct, and B) ~io :"J0 +I-'" -o~ , 0 " ' ' ,  0 �9 , 

Case A. Let the multiple eigenvalue be split into simple eigenvalues in a first approxi- 
.(~) 

mation. For each 6i we obtain a system of coefficients Pni(n, i = io, io + i, ..., ioo) 

from the homogeneous system (3.2) and the normalization conditions (see the first line in the 

relations (1.5)). Thus, the zeroth approximation (3.1) is constructed for the eigenfunctions. 

Let us go over to terms of first order smallness f( ) and w(t); thesefunctions are ex- 
x 

panded into the series (2.1), certain terms of which are zero Bki ~ 0, k, i = io, io + i, ..., 

ioo (see (1.5)). The formulas analogous to (2.4) and (2.5) finally are 

a k i  = ~)k~ - -  ( tax i '  dPk)(adOk'  cPh)-l '  k : i ,  2 . . . . .  

(sd% i, Oh) ~- ( tax  i, Oh) ( a d r  h, (I)k)-I ( d2aPh, aPk) 
Zh -- Xi , k =/= i o, i s + 1 . . . . .  iOO. ~ 

Terms of higher order of smallness in the expansions (1.5) are constructed in the same manner 
also. Let us note that the method proposed for constructing these asymptotic expansions 
differs from the method in [8] since no information is used here except the initial system of 
equations (i.i). 

Case B. Let "J0~(~)--~(1)--'~J0 +I .... =Z(~),jo0 i~176176176176176 i.e., part (or all) of the multiple eigen- 

values remain multiple. Let us introduce new eigenfunctions and functions of first order of 
smallness : 

�9 ~ 

Joo Joo 
w?,= E ~ wco, (1) ~nj  n ' " : Fn$~n T 

n~J  0 n=jo 
~00 

I~ ' )=  ~ ,,' f ( , )  . . 

�9 ~nj.n ' ] = ] o '  J o + i  . . . . .  1o o, 
~ J O  
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where the functions w (~ (i) f(1) , w , and are taken from (2.1) and (3.1). It is easy to see 
n n n 

that the functions thus constructed satisfy the problems (1.4), (1.8), and (1.9). Analogously 
to (2.1), we represent the functions 

q-) q> : ,  
= ~ ~kj%' = ~ %gk" 

h=l k=l 

! i 
Pnj 

We obtain a linear homogeneous system analogous to (3.2) for the unknown coefficients 

( ~ 0, t~/)(1) ) ( d20~ritk ' ( ~  ) ' ~j  ,, ,  % (ad%, %)-1 %) + 0./s~), % 
\ n = J  O \n: /0 

Joo 3co 

m=j 0 n=3 0 / 

The f o r m u l a s  t o  d e t e r m i n e  t h e  c o e f f i c i e n t s  a '  a n d  B' h a v e  t h e  f o r m  
k j  k j  

' ' _ ( ~  o'.~g~> %)(~%,%)-~ .  k = , , 2 ,  
\n=J  o 

�9 Joo \ Joo 
/ 3~176 ' (1) "~, ( '%1 ~" 1,,,(1) ) (d2q~)h ' . I E ~)r'J "In ' ( ] )h l~  I ~'J Prtj wn ' (l)h (ddf~)h' (~)h) -1 Q]Dh) -[- Z} 1) ~ P'.j~h. 

13~j \~=Jo / \~=)o / "=~o 
= ~k -- kj 

k:--~i o, i o @ t  . . . . .  ioo. 

The coefficients B~j_ # 0, k = io, io + i, ..., ioo (see (1.5)). 

Investigation of the spectrum in linear stability problems of nonideal shells is the first 
necessary link in the construction of solutions of nonideal system buckling under loads close 
to the critical [i0, ii]. 

4. CERTAIN SPECIFIC EXAMPLES FOR THE FIRST AND SECOND PROBLEMS 

A. Let the initial imperfection be (x is the longitudinal, and y the circumferential 
coordinate) 

0 = 0). w ~  ~  ( ~ = 0 ,  ,Vxy ( 4 . 1 )  

Taking (4.1) into account, we write the operators s and t for the selected imperfection in 
the form (see (1.3)) 

~ t ------ (h/R) w~ ( )~,u. (4.2) 

Formulas (2.4) and (2.5) with (4.2) taken into account can be utilized in computations if 
Xnm # Xn+i,m' and moreover the orthogonality of the functions sin ny and cos ny is taken into 

account. For closed hinge-supported cylindrical shells the eigennumbers % and eigenfunctions 
are determined in the form (see (1.4)) nm 

(sin ng" I 
q)nm = ~nm leos nyj sin m ~ R x / L ,  n = 2, 3, 4, . . .  , m = 1, 2, 3 . . . . .  

(4.3) 

where n is the number of waves in the circumferential direction, m is the number of half- 
waves in the longitudinal direction, and Ynm are normalizing factors that are determined 

from the relationships (see the second line in (1.5)): 
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2 [[mzrR\ 2 
2~ L/R 

~_n2J2[_ ai (~R_)2 a2ne] S y s i n 2 n y s i n 2 _ _ ~ x d x d y = t  . . r n ~ R  

0 o 

The coefficients ~kjnm and Bkjnm of the expansion (2.1) are computed from the formulas 

Taking (4.4) 

the eigenvalue 
nm 

%~.~ = 1 3 ~ , ~ -  7k- (A~x%,.,=, %j) ' 

u; o 
h f( ~A~r % 3  ( %  ..... , % )  

~k~..~ = -h--,V (A~-----~k~,~-----: %j) + 

o~ �9 } 1 
+ ( Wxx nm,xxvu' kj) .  ~ -- ;~nra "for k 4 :  ,, or ] ~= m, 

~hjnm = 0 ~for k = n, j = m. 

( ~ )  
i n t o  a c c o u n t ,  t h e  d i r e c t  c o r r e c t i o n  

n m  

( 4 . 3 )  h a s  t h e  f o r m  

0 . } 

(4.4) 

to the accuracy of a factor ~ to 

The appearance of the factor h/R in the last formula is related to the units introduced 
earlier for the measurement of the amplitude of the initial imperfections in (4.2), the shell 
thickness is selected as the measurement unit. The last formula can be used if the shell is 
shallow in each half-wave of the initial imperfection (see the initial SYstem of equations 
(l.i)). 

B. Let the initial imperfection be the same as in example A: w ~ : w~ (w ~ = 0, 
YY 

Wxy~ = O) but %nm = Xn+i,m" We equate the determinant corresponding to the system (3.2) to 

zero; after manipulations we have 
2n 2/maR\2 h ~ 0 ~ ] ( - z - )  ~ - t~=~-~  ' r  ~"~ o 

2 fmgR\2 h ~ I ~0.  
�9 0 2<n+1) |---r--| --5-[W~xmn~l m' mn+x,m)+Z(1)  

Since (w~x~nm , ~nm ) = (W~ ~n• cn+i ,m ) , then X(1)/X (1)nm n+i,m = n:/(n + 1) 2 # i, i.e. , the 

quadrupole eigenvalue already is split into two quadratics in the first approximation. 

C. Let the initial imperfection have the form 

w ~ (x, y) = w~ sin iv s in  --L'-- x 
i,j=i 

and in addition Xnm ~ Xn+~,m' but let the two eigenfunctions 

1 mnR 
Ohm = TnmSinnysin--L--x  , 

m~R 
O ~ m = ? n m C O S n y s i n ~ x ,  n ~ 2 , 3 , 4  . . . . .  m ~ t , 2 , 3  . . . .  

correspond to the last eigenvalue X . Let us introduce the following notation 
nm 

�9 i i ~ = m r  , r A~ = (ad%m, % , . ) ,  r O = ( t a a % ~ , O . ~ ) ,  S 0 ~ ~m 

D~ = (d2.~. . ,  r  where ,, j = ,,  2; 

The determinant corresponding to the system (3.2) has the form 
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TllD1All .~_ S11 _}_ ~(1) T21D1At1 _~_ $21 [ : O. 

Ta2D2A~I _i_ S12 T22D2A~l .~_ $2 2 _~ ~(1) I (4.5) 

Since the curvatures W~ Wyy,~ and w ~ are continuous functions, then their corresponding 

series can be integrated term by term in the given domain. Taking account of the equalities 

2~ 2g 
S sin iy sin 2 nydy = O, j" cos ig cos ny sin nydy = O, 
o o 

2r 
j" sin iy cos 2 nydy ~ O, 
0 

we can obtain T~x = T2~ = $11 = $22 = 0. To calculate T21 the following must be noted 

2~ {0_~_ i =/= 2n, 
j siniycosngsinnydy~ , i = 2 n ,  

0 

2~ [0 ,  i =/: 2n, 
y cos ~g sin 2 nydg = n / 
o ( - - ' T '  i = 2 n ,  

L/R ( O, ] even,  

I sin x sin ~ T xdx = 4m2L 
o ~hS(~ , , ; , _ j ~ ) ,  j odd, 

L/~ jnR mnR mnR { O, 
COS --L-'- x cos --'L-- x sin ---L-- xdx = 2mL 

o ~ ( ~  - f ) '  

even, 

] odd, 

As a result of the calculations we obtain 

T21 = 2 (nm~)  2 T n2 -F nm .,~ 2j - -  I " 

The remaining quantities are calculated analogously. Finally, the determinant (4.5) 
form 

takes the 

oo 0 

~(1) -- 4 --~- -'L" (m,rt)4 2 2 

j= l  
=0. 

Therefore, if the mode sin 2ny sin j/~Rx/L, where j is odd, is present among the modes giving 
the initial incorrection, then the duplex eigenvalue X is split into simple eigenvalues in 
a first approximation, nm 
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APPLICATION OF PHOTOELASTIC COATINGS TO STRAIN 

INVESTIGATION IN POLYCRYSTAL MICRODOMAINS 

L. A. Krasnov and A. P. Shabanov UDC 620.171.5 

A thin layer (coating) of optically active material is deposited on the specimen surface 
in investigations by the method of photoelastic coatings. If the coating thickness is rela- 
tively small, processing the experiment results offers no special difficulties since the 
optical quantities obtained during the experiment will be proportional to the measured strains 
on the specimen surface [i]. If the coating thickness is commensurate with the characteristic 
dimension of the strain zone, then analysis of the measurement results is complicated sub- 
stantially and requires special processing methods (refinements). 

This problem is especially complex for strain investigations in microdomains of real 
polycrystalline materials. Here even for small loads (in the domain of the so-called micro- 
plastic strains) inelastic deformation occurs by the formation and development of displacements 
governed by the localization of slip traces. Such zones of local strain concentration have, 
in turn, a finer structure and can reflect the result of the action of several strain mecha- 
nisms in the slip band domain [2, 3]. In all these cases the minimal coating thickness 
realizable in practice exceeds the size of the section deformed and the measurement results 
cannot therefore be used without appropriate correction. 

Different cases of strain measurement in a slip band domain of width 2a (Fig. i) are 
considered in this paper. The thickness d of the photoelastic coating being used (not shown 
in Fig. i) considerably exceeds the deformation zone dimension (d > 2a). We hence consider 
the strains homogeneous in the slip band domain while they can be neglected outside this 
zone. We denote the projections of the displacement vector Po characterizing the displacement 
of the undeformed sections as a rigid whole on the x, y, z axes by Uo, Vo, Wo. We consider 
the displacements U, V, W within the deformed zone --a< x ~ a linear functions of the coordi- 
nate x. 

!. Out of all the displacement vector component, let just the vertical component Vo be 
different from zero. If the length of the slip band is large in the z axis direction, it can 
be considered that the coating deposited on the surface y = 0 (see Fig. i) is under plane 
strain conditions with the following boundary conditions: 

~ r  y =  d e x =  O, T v =  O, (i.i) 

- - V  o, i f  - - ~ < x < - - a ,  
~ r  y = O  V=]Vox/a, i f  - - a ~ x ~ a ,  

[V o, i f  a ~ x ~ 
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